Solved by verified expert:Create confidence intervals related to the interval and ratio-level data you collected.
1.What is the best estimate of the population mean
2.Develop a 95% confidence interval for the population mean. Develop a 90% confidence interval for the population mean. Develop a 98% confidence interval for the population mean.
3.Interpret the confidence interval.
Create an individual Excel document for each of the required items.
sym5061.xlsx
sym5062.xlsx
sym5063.xlsx
sym5064.xlsx
sym5065.xlsx
Unformatted Attachment Preview
Static stretching
frequency
70
6
71
2
72
4
73
6
74
7
75
4
76
0
77
1
Running frequency
180
1
182
10
183
5
184
6
185
1
186
2
188
3
189
1
190
1
Static Stretching
8
12
7
10
6
5
8
4
6
3
4
2
2
1
0
70
71
72
73
74
75
76
77
0
Running
Static stretching
1
10
5
6
1
2
3
1
1
Running
180
182
183
184
185
186
188
189
190
Lower valueUpper valueFrequency Cumulative PercentageCumulative
Frequency
Percentage
70
71
8
8
0,26
0,26
72
73
10
18
0,33
0,59
74
75
11
29
0,36
0,95
76
77
1
30
0,03
0,98
(numbers were rounded for significant figures)
Running Table
Lower valueupper valueFrequency Cumulative PercentageCumulative
frequency
percentage
180
182
11
11
0,36
0,36
183
184
11
22
0,36
0,72
185
186
3
25
0,1
0,82
188
190
5
30
0,16
0,98
Static stretching
frequency
70
6
71
2
72
4
73
6
74
7
75
4
76
0
77
1
Running frequency
180
1
182
10
183
5
184
6
185
1
186
2
188
3
189
1
190
1
Static Stretching frequency as compared to Running
Frequency
12
Frequency
10
8
Static Stretching
6
running
4
Static Stretching Polygon
2
Running Polygon
0
1
2
3
4
5
Trial
6
7
8
9
Static stretching
frequency
70
6
71
2
72
4
73
6
74
7
75
4
76
0
77
1
Running frequency
180
1
182
10
183
5
184
6
185
1
186
2
188
3
189
1
190
1
Static stretching
frequency
70
71
72
73
74
75
76
77
Sum
Mean
Median
Mode
(x-m)^2
6
2
4
6
7
4
0
1
7.6729
3.1329
0.5929
0.0529
1.5129
4.9729
10.4329
17.8929
30
2183
72.76666667
73
74
Cumulative Frequency
6
8
12
18
25
29
29
30
(f)(x)
Running
420
142
288
438
518
300
0
77
frequency
180
182
183
184
185
186
188
189
190
1
10
5
6
1
2
3
1
1
30
(x-m)^2
15.7609
3.8809
0.9409
0.0009
1.0609
4.1209
16.2409
25.3009
36.3609
5519
183.9666667
183
182
Cumulative Frequency
(f)(x)
1
11
16
22
23
25
28
29
30
180
1820
915
1104
185
372
564
189
190
Static stretching
frequency
70
71
72
73
74
75
76
77
Mean
Variance
6
2
4
6
7
4
0
1
72.77
3.56437931
(x-m)^2
7.6729
3.1329
0.5929
0.0529
1.5129
4.9729
10.4329
17.8929
Running
frequency
180
182
183
184
185
186
188
189
190
1
10
5
6
1
2
3
1
1
183.97
6.171275862
(x-m)^2
15.7609
3.8809
0.9409
0.0009
1.0609
4.1209
16.2409
25.3009
36.3609
Static stretching
frequency
70
71
72
73
74
75
76
77
Mean
Standard Deviation
6
2
4
6
7
4
0
1
72.77
1.8879564
(x-m)^2
7.6729
3.1329
0.5929
0.0529
1.5129
4.9729
10.4329
17.8929
Running
180
182
183
184
185
186
188
189
190
frequency
1
10
5
6
1
2
3
1
1
183.97
2.484205278
(x-m)^2
15.7609
3.8809
0.9409
0.0009
1.0609
4.1209
16.2409
25.3009
36.3609
Static stretching
frequency
70
71
72
73
74
75
76
77
Sum
Probability
6
2
4
6
7
4
0
1
30
0.2
0.066666667
0.133333333
0.2
0.233333333
0.133333333
0
0.033333333
Running
180
182
183
184
185
186
188
189
190
frequency
1
10
5
6
1
2
3
1
1
30
Probability
0.033333333
0.333333333
0.166666667
0.2
0.033333333
0.066666667
0.1
0.033333333
0.033333333
…
Purchase answer to see full
attachment